
Eur. Phys. J. B 1, 123-127 (1998) THE EUROPEAN
PHYSICAL JOURNAL B
c©
EDP Sciences
Springer-Verlag 1998

Linear stability analysis of the Hele-Shaw cell with lifting plates
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Abstract. The first stages of finger formation in a Hele–Shaw cell with lifting plates are investigated by
means of linear stability analysis. At the beginning of lifting the square of the wavenumber of the dominant
mode results to be proportional to the lifting rate (in qualitative agreement with the available experimental
data), to the square of the length of the cell occupied by the more viscous fluid, and inversely proportional
to the cube of the cell gap. This dependence on the cell parameters is significantly different of that found in
the standard cell. On the other hand, our results show that the wavelength of the dominant mode decreases
with lifting time, also in agreement with several experimental observations.

PACS. 47.20.-k Hydrodynamics stability – 68.10.-m Fluid surfaces and fluid-fluid interfaces

1 Introduction

Despite of the great effort devoted lately to improve the
understanding of Saffman-Taylor (ST) instabilities [1–4],
many related experimental facts still lack a sound expla-
nation [3]. Here we are interested in the experimental ob-
servations on Hele-Shaw (HS) cells with lifting plates [5].
This variation with respect to the standard constant gap
HS cell was suggested as a way to bring the ST problem
closer to directional solidification [6,7]. In this experiment
(see Fig. 1), instead of applying pressure to the less viscous
fluid, the upper plate is lifted at the less viscous side (com-
monly air) at a fixed rate. It seems clear that the lifting
of the upper plate will promote a pressure gradient anal-
ogous to the temperature gradient present in directional
solidification. An interesting variation of this experiment
is the Hele–Shaw cell with a small gap gradient investi-
gated by Zhao et al. [8] (see also Ref. [9]).
The main experimental results obtained by Ben–Jacob

et al. [5] on a cell in which the bottom plate had a square
lattice grooved on it are: i) at low lifting rates fingers are
formed, whereas as the lifting velocity is increased, fingers
turn into dendrites; and, ii) the spacing of the dendrites
decreases as the lifting rate is increased, and does also de-
pend on the initial plate spacing. On the other hand, in
the more recent work of La Roche et al. [10] it was re-
ported that, as lifting proceeds, the branches in the den-
drites become thicker and the fractal dimension of the ag-
gregate decreases. Although the experimental results for
the HS with lifting plates have been analysed by means of

a Present address: Physics Department, Liaoming University,
Shenyang, 110036, P.R. China
b e-mail: oscar@quijote.icmm.csic.es

a simplified version of the growth law [10,11], a detailed
linear stability analysis of this system is still lacking.
In this work we present a study of growth instabilities

in Hele–Shaw cells with lifting plates. We first derive the
basic equation (growth law), which results to be different
from that proposed by Ben–Jacob et al. [5]. In particu-
lar our equation is not homogeneous [10], and thus the
comparison with the simpler version of the directional so-
lidification problem is not so evident. Then we discuss
the boundary conditions and carry out the linear stability
analysis. Our results qualitatively explain the experimen-
tal data outlined in the preceeding paragraph.
The paper will be organized in five sections. In Section

2 we will present the continuum equations used, whose
perturbative solution is studied in detail in Section 3. The
physical consequences and implications of these solutions
is the subject for Section 4. Finally, in Section 5, we will
summarize the results.

2 Basic equations and boundary conditions

Flow in the Hele-Shaw cell is governed by the Navier-
Stokes equation [12,13]

∂v

∂t
+ (v · ∇)v = −

1

ρ
∇P +

µ

ρ
∇2v , (1)

where v is the speed of the fluid and P the pressure. ρ
and µ are the density and the viscosity of the fluid, respec-
tively. For small Reynolds numbers and assuming that the
time derivative of the fluid velocity is much smaller than
its spatial derivatives, this equation reduces to

∇P = µ∇2v. (2)
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Fig. 1. Schematic representation of the Hele-Shaw cell with
lifting plates, showing the parameters used in the text.

Averaging over the the cell gap leads to the Poiseuille-
Darcy equation for the mean velocity of the fluid,

vj = −
b2

12µj
∇Pj , (3)

where vj , µj , and Pj are the velocity, viscosity and pres-
sure field of fluid j (j = 1, 2); and b is the gap of the
cell. In order to obtain an equation for the pressure field
we need to combine equation (3) with mass conservation.
In the present case the latter deserves a careful consid-
eration. Let the HS cell lie in the x−y plane, the y–axis
being the direction of motion of the fluids, and the origin
of coordinates be at the closed (fixed) end of the cell (see
Fig. 1). The gap of the cell varies as

b(y, t) = b0 + y tan(ωt) , (4)

where ω is the lifting angular speed (we shall hereafter call
a = tan(ωt)). As a consequence, the mass within a thin
column of height b changes as δm/δt ∝ δb/δt (where the
density of the fluid ρ is assumed to be constant). Then,
the equation which describes mass conservation reads

∂b

∂t
= −∇ · (bvj) . (5)

It should be here noted that mass (and density) conser-
vation requires that, neither bubbles are formed nor drops
of the displaced fluid are left behind during the lifting pro-
cess. This condition, although unlikely accomplished in
actual experiments, is probably unavoidable in analytical
calculations. Equation (5), combined with the Poiseuille-
Darcy equation (Eq. (3)), gives the differential equation
(growth law) which governs flow in the HS cell with lifting
plates,

∇2Pj +
3a

b

∂Pj

∂y
=
12µjȧy

b3
, (6)

where ȧ expresses the derivative of a with respect to time.
It is interesting to note that this is an inhomogeneous
equation as opposed to the homogeneous one reported in
reference [5]. The inhomogeneous term comes from

the time dependence of the gap (Eq. (4)) and it is not
present in the growth law for the HS with a gap gradi-
ent, as already found by Zhao et al. [3,8]. Note, however,
that the inhomogeneous term is essential in this case, as
no fluid is injected at the open end of the cell to promote
fluid motion (see below). We also note that including the
spatial dependence of the gap b in equation (5) leads to
a factor 3 in the second term of equation (6), as opposed
to the factor 2 reported in reference [5] and in agreement
with Zhao et al. [8]. We should remark that neglecting the
second term in the l.h.s. of equation (6) — as done in ref-
erence [10] — does not qualitatively change the results, in
line with Zhao et al. [8]. The latter authors reported that,
for most experimental conditions, a linear stability analy-
sis of the HS cell with a gap gradient gaves similar results
than for the standard HS cell. As regards the comparison
with the directional solidification problem, we note that
equation (6) is similar to that which describes directional
solidification in some unsteady-state [7].
In discussing the boundary conditions let L be the

length of the cell and Li the length of the zone occupied
by the more viscous fluid at t = 0. On the other hand,
and in order to carry out the linear stability analysis, we
assume that the interface between the two fluids, instead
of being flat, is slightly perturbed as yp = yi+δe

iqx, where
δ = δ0e

γt is the time–dependent amplitude of the pertur-
bation (assumed to be much smaller than yi) and q its
wavenumber.
The first boundary condition accounts for the fact that

the fixed end of the cell (y = 0) is closed,

v1y(0) = 0. (7)

On the other hand, the velocities of the two fluids must
be equal at the interface

v1y(yp) = v2y(yp). (8)

Finally the forces which the fluids exert on each other at
the common interface must be equal and opposite. This
condition can be approximated by

P1(yp)− P2(yp) = σ

[
1

Rx(yp)
+

1

Rz(yp)

]
, (9)

where σ is the surface-tension (the interfacial tension as-
sociated to the interface between the two fluids) and Rx,
Rz, the principle radii of curvature of the interface at a
given point,

1

Rx(yp)
= −
∂2yp

∂x2
, (10a)

1

Rz(yp)
≈

1

b(yi, t)
· (10b)

The latter equation is related to wetting effects. Al-
though, as already reported by other authors [8,13,14], we
have found that these effects give a negligible contribution,
we have kept this term all throughout the calculation.
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3 Linear stability analysis

Once the plane interface is perturbed, the most general
solution of equation (6) can be written as

Pj(x, y) = fj(y) + gj(y)e
iqx , (11)

where gj(y) is proportional to the amplitude of the pertur-
bation δ. Introducing equation (11) into the growth law
(Eq. (6)) we obtain

∂2fj

∂y2
+
3a

b

∂fj

∂y
=
12µjȧy

b3
, (12a)

∂2gj

∂y2
+
3a

b

∂gj

∂y
− q2gj = 0. (12b)

The boundary conditions for the fluid velocity at the
closed end give

∂f1

∂y

∣∣∣∣
y=0

= 0, (13a)

∂g1

∂y

∣∣∣∣
y=0

= 0. (13b)

Note that in order to obtain physically meaningful so-
lutions we should also require that the perturbation be
damped in the open end of the cell, this means that
(∂g2/∂y)|y=L = 0. This assumption will be valid when-
ever the viscosity µ2 is very small (note that, in the present
work, we will analyze experiments in which fluid 2 is air).
The continuity of the velocity at the interface between the
two fluids leads to (up to first order in δ):

1

µ1

∂f1

∂y

∣∣∣∣
y=yi

=
1

µ2

∂f2

∂y

∣∣∣∣
y=yi

, (14a)

1

µ1

(
δ
∂2f1

∂y2
+
∂g1

∂y

)∣∣∣∣
y=yi

=
1

µ2

(
δ
∂2f2

∂y2
+
∂g2

∂y

)∣∣∣∣
y=yi

. (14b)

Finally, the continuity of forces at the interface gives

[
f1 − f2 −

σ

Rz

]
y=yi

= 0, (15a)

[g1 − g2(y)]y=yi= −

[
∂ (f1 − f2)

∂y

]
y=yi

+ σq2. (15b)

The solution of equation (12a), using the boundary
conditions (13a, 14a), can be written as

fj =
12µjȧ

a3

(
b0

b(y, t)
+
1

2
ln b(y, t)−

b20
4b(y, t)2

)
+Aj , (16)

where Aj (j = 1, 2) are constants that can be determined
from the boundary condition of equation (15a) (we will not
need them here). It should be noted that, had equation (6)

been homogeneous, the solution of equation (12a) would
have been, fj = Aj − Bj/b(y, t)2, which, after proper use
of the boundary conditions, gives a uniform pressure field
and, therefore, no fluid motion, as remarked above. On
the other hand the solution of equation (12b) is

gj =
1

ξ
[CjI1(ξ) +DjK1(ξ)] , j = 1, 2, (17)

and its derivative,

∂gj

∂y
=
q

ξ
[CjI2(ξ)−DjK2(ξ)] , j = 1, 2, (18)

where ξ = qb(y, t)/a, and I1(ξ), I2(ξ), and K1(ξ), K2(ξ)
are the first and the second order modified Bessel func-
tions. The constants Cj , Dj have to be determined from
the boundary conditions,

C1I2(ξ0)−D1K2(ξ0) = 0, (19a)

C2I2(ξL)−D2K2(ξL) = 0, (19b)

(
C1

µ1
−
C2

µ2

)
I2(ξi)−

(
D1

µ1
−
D2

µ2

)
K2(ξi) = 0, (19c)

(C1 − C2)I1(ξi) + (D1 −D2)K1(ξi) = εδ, (19d)

where ξ0 = qb0/a, ξi = q(b0 + ayi)/a, ξL = q(b0 + aL)/a,
and ε is given by

ε = ξi

[
12(µ1 − µ2)Vi(yi)

b(yi, t)2
+ σq2

]
, (20)

where the velocity of the interface between the two fluids
is given by

Vi(t) = −
b2

12µj

∂fj

∂y

∣∣∣∣
y=yi

= ẏi = −
ȧy2i
2b(yi, t)

, (21)

independent of j. Note that, due to the choice of the ori-
gin of coordinates, this velocity is negative. Integrating
this velocity gives an expression for the position of the
interface:

yi(t) =

√
b20 + 2Lib0a− b0

a
· (22)

Note that yi(0) = Li. This result coincides with that ob-
tained from mass conservation, 12ay

2
i+b0yi = b0L. We note

that neglecting the second term in the l.h.s. of the growth
equation (Eq. (6)) is inconsistent with mass conservation.
Now, we have all the ingredients to calculate the in-

stantaneous velocity of the interface (growth rate), which
can be calculated from the Poiseuille-Darcy equation. The
result is

v1y(yp) = ẏp = ẏi + δ̇e
iqx

= −
b2(yp, t)

12µ1

∂(f1 + g1e
iqx)

∂y

∣∣∣∣
y=yp

. (23)
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From which we obtain the velocity of the perturbation γ

γ =
δ̇

δ
= −
ḃ(yi, t)

b(yi, t)
−
ab(yi, t)ε

12
Z(ξi, ξL), (24)

where,

Z(ξi, ξr) =
I2(ξi)

I1(ξi)
×

(
µ1
[G2(ξ0) +G1(ξi)]

[G2(ξ0)−G2(ξi)]

−µ2
[G2(ξL) +G1(ξi)]

[G2(ξL)−G2(ξi)]

)−1
, (25)

and,

Gj(ξ) = Kj(ξ)/Ij(ξ) , j = 1, 2 . (26)

At the very beginning of liftting 1� ξ0 � ξi � ξL. As
a consequence, G1(ξi) ' G2(ξi). On the other hand, and
due to the exponential behavior of the Bessel and Hankel
functions, G2(ξ0) � G2(ξi) � G2(ξL). Thus, equation
(24) can be approximated as

γ = −
ḃ(yi, t)

b(yi, t)

−
b2(yi, t)

µ1 + µ2
q

[
12(µ1 − µ2)Vi(t)

b2(yi, t)
+ σq2

]
. (27)

The wavenumber of the dominant mode qd results to be

q2d = −
4(µ1 − µ2)Vi(t)

σb2(yi, t)
· (28)

This result is quite similar to that obtained for the stan-
dard Hele-Shaw cell. The only difference resides upon the
fact that the interface velocity Vi(t) and the gap b(yi, t)
now depend on time. As regards the cutoff wavenumber,
we note that if the first term in the r.h.s of equation (27)
is neglected (in fact it is quite small for most of the exper-
imental configurations and conditions), the result is again
equivalent to that of the standard cell (q2c = 3q

2
d). If it is

not neglected, a minimum wavenumber, below which the
system is stable, is also found.
At t = 0, the dominant mode is

q2d = −
4(µ1 − µ2)

σb20
Vi(0), (29)

where Vi(0) is the velocity of the interface at t = 0,

Vi(0) = −
ωL2i
2b0
· (30)

Vi(0) introduces a dependence on the cell parameters of
the wavenumber of the dominant mode, not present in the
standard cell. In particular, qd depends on the square of
the length occupied by the displaced (more viscous) fluid.
It is also inversely proportional to the gap, leading to a b−30
dependence of qd, as opposed to b

−2
0 in the standard cell.

These differences could be easily checked experimentally.
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Fig. 2. Results for the velocity of the perturbation γ (rad/s)
as a function of its wavenumber q (cm−1), for several times
after lifting is initiated: t = 0 s (continuous line), t = 0.5 s
(chain line) and t = 1 s (dashed line). The results correspond
to the cell parameters of reference [7], namely: air/glycerine
(µ = 65 mPa and σ = 29.5 N/m) in a cell with a gap of
2.5 mm and a length of 1 m (we assume that glycerine fills the
whole cell). The lifting rate is ω = 0.001 rad/s.

4 Numerical results and discussion

At the beginning of lifting (t = 0) the process is gov-
erned by equation (30). In actual experiments, as the less
viscous fluid is commonly air, µ2 ≈ 0, and the wave-
length of the dominant and the cutoff modes are given
by expressions identical to those for the standard cell,
namely, λd/b0 = π(σ/µ1Vi(0))

1/2, and λc = λd/
√
3, re-

spectively. In order to estimate the wavelength of the dom-
inant mode we consider the experimental set up investi-
gated by Zhao et al. [8]. These authors used air/glycerine
(µ = 65 mPa and σ = 29.5 N/m) in a cell with a gap of
2.5 mm and a length of 1 m (we assume that glycerine
fills the whole cell). Taking ω = 0.001 rad/s, λd ≈ 1.2 cm.
This result decreases in an order of magnitude if, as done
by Ben–Jacob et al. [5], the lifting rate is increased in
two orders of magnitude. Although we cannot precisely
compare our results with the data obtained by the latter
authors as they do not give important parameters such as
the length and gap of the cell, the decrease in the spacing
of the dendrites as the lifting rate is increased reported by
Ben–Jacob et al. [5], is clearly reproduced by our analysis.

If instead of glycerine we consider water, at t = 0 and
for the same cell parameters, the wavelength of the dom-
inant mode results to be ≈ 0.4 cm−1, which leads to a
wavelength of ≈ 16 cm. This wavelength is of the order of
the full width of standard cells and therefore one should
not expect the formation of fingers. Further we note that
the velocity of the perturbation results to be at least an
order of magnitude smaller than for glycerine, reinforcing
our view that the flat front would be rather stable. Note
that this result is also obtained for the standard cell and
that it is in agreement with the experimental observations.
The only way to increase the tendency towards instabili-
ties would be to increase the velocity of the interface which
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Fig. 3. Wavenumbers (cm−1) of the dominant (qd, continuous
line) and cutoff (qc, broken line) modes as a function of time (s)
in the Hele–Shaw with lifting plates investigated in this work.
The results correspond to the parameters given in the caption
of Figure 1.

in the present case can be accomplished by increasing L
and the lifting rate and/or decreasing b0.
As lifting proceeds, fingers begin to form and a lin-

ear stability analysis, such as that carried out here, is no
longer strictly valid. However, as the overall shape of the
front is flat, we expect the linear stability analysis to give
useful hints even beyond that point. In Figure 2 we re-
port our results for the velocity at which the perturbation
propagates as a function of the perturbation wavenum-
ber, for several times after lifting was initiated. In the
calculations the first term in the r.h.s. of equation (27)
was neglected. The results correspond to the cell param-
eters given in the preceeding paragraph and a lifting rate
of ω = 0.001 rad/s. It is noted that the velocity of the
perturbation γ strongly decreases with time. In fact the
value at its maximum is reduced in more than a factor
of 5 after lifting the cell for 1 second. The wavenumber
at which γ shows a maximum (dominant mode) and the
cutoff wavenumber do also decrease with time (see Fig. 3).
The decrease of the velocity of propagation of the pertur-
bation suggest a lower tendency towards instabilities and,
thus, a smaller fractal dimension of the aggregates (this
is compatible with a decreasing qd). These results agree
with the experimental observations (and numerical simu-
lations) reported by La Roche et al. [10] which indicate
that, as lifting proceeds, the branches of the dendrites be-
come thicker and the fractal dimension of the aggregate
decreases. It is also interesting to note that the decrease in
the strength of the instability with the time of lifting indi-
cates that the front will remain flat on average, instead of
evolving into a single finger as in the standard HS cell [3].

5 Conclusions

Summarizing, we have presented a linear stability study of
the HS with lifting plates. We have first derived the basic
equations which result to be that of the directional solidi-
fication problem under some unsteady conditions. Despite
the simplifications made to do the analytical work (we do
not treat completely the wetting effects and neglect the
fluid that stays attached to the plates), the results for the
wavelength of the dominant mode λc seem to be compati-
ble with the available experimental data. In particular we
obtain that λc decreases with the lifting velocity and the
lifting time, in agreement with several experimental ob-
servations reported in references [5,10]. Nonetheless, more
experimental studies of the VHSC are required in order to
allow a full (quantitative) test of the linear stability anal-
ysis discussed in the present work.
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